Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1352810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601738

RESUMO

Commensal gut bacteria use oleate hydratase to release a spectrum of hydroxylated fatty acids using host-derived unsaturated fatty acids. These compounds are thought to attenuate the immune response, but the underlying signaling mechanism(s) remain to be established. The pathogen Staphylococcus aureus also expresses an oleate hydratase and 10-hydroxyoctadecanoic acid (h18:0) is the most abundant oleate hydratase metabolite found at Staphylococcal skin infection sites. Here, we show h18:0 stimulates the transcription of a set of lipid metabolism genes associated with the activation of peroxisome proliferator activated receptor (PPAR) in the RAW 264.7 macrophage cell line and mouse primary bone marrow-derived macrophages. Cell-based transcriptional reporter assays show h18:0 selectively activates PPARα. Radiolabeling experiments with bone marrow-derived macrophages show [1-14C]h18:0 is not incorporated into cellular lipids, but is degraded by ß-oxidation, and mass spectrometry detected shortened fragments of h18:0 released into the media. The catabolism of h18:0 was >10-fold lower in bone marrow-derived macrophages isolated from Ppara -/- knockout mice, and we recover 74-fold fewer S. aureus cells from the skin infection site of Ppara -/- knockout mice compared to wildtype mice. These data identify PPARα as a target for oleate hydratase-derived hydroxy fatty acids and support the existence of an oleate hydratase-PPARα signaling axis that functions to suppress the innate immune response to S. aureus.


Assuntos
PPAR alfa , Staphylococcus aureus , Camundongos , Animais , PPAR alfa/metabolismo , Staphylococcus aureus/metabolismo , Ácido Oleico , Ácidos Graxos/metabolismo , Camundongos Knockout
2.
J Struct Biol ; 216(1): 108065, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310992

RESUMO

Bacteria use the fatty acid composition of membrane lipids to maintain homeostasis of the bilayer. ß-Ketoacyl-ACP synthase III (FabH) initiates fatty acid biosynthesis and is the primary determinant of the fatty acid composition. FabH condenses malonyl-acyl carrier protein with an acyl-Coenzyme A primer to form ß -ketoacyl-acyl carrier protein which is used to make substrates for lipid synthesis. The acyl-Coenzyme A primer determines whether an acyl chain in the membrane has iso, anteiso, or no branching (straight chain) and biophysical properties of the membrane. The soil bacterium Bacillus subtilis encodes two copies of FabH (BsFabHA and BsFabHB), and here we solve their crystal structures. The substrate-free 1.85 Å and 2.40 Å structures of BsFabHA and BsFabHB show both enzymes have similar residues that line the active site but differ in the architecture surrounding the catalytic residues and oxyanion hole. Branching in the BsFabHB active site may better accommodate the structure of an iso-branched acyl-Coenzyme A molecule and thus confer superior utilization to BsFabHA for this primer type. The 2.02 Å structure of BsFabHA•Coenzyme A shows how the active site architecture changes after binding the first substrate. The other notable difference is an amino acid insertion in BsFabHB that extends a cap that covers the dimer interface. The cap topology is diverse across FabH structures and appears to be a distinguishing feature. FabH enzymes have variable sensitivity to natural product inhibitors and the availability of crystal structures help clarify how nature designs antimicrobials that differentially target FabH homologs.


Assuntos
Proteína de Transporte de Acila , Bacillus subtilis , Especificidade por Substrato , Proteína de Transporte de Acila/química , Ácidos Graxos , Coenzima A
3.
J Biol Chem ; 300(2): 105627, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211817

RESUMO

The soluble flavoprotein oleate hydratase (OhyA) hydrates the 9-cis double bond of unsaturated fatty acids. OhyA substrates are embedded in membrane bilayers; OhyA must remove the fatty acid from the bilayer and enclose it in the active site. Here, we show that the positively charged helix-turn-helix motif in the carboxy terminus (CTD) is responsible for interacting with the negatively charged phosphatidylglycerol (PG) bilayer. Super-resolution microscopy of Staphylococcus aureus cells expressing green fluorescent protein fused to OhyA or the CTD sequence shows subcellular localization along the cellular boundary, indicating OhyA is membrane-associated and the CTD sequence is sufficient for membrane recruitment. Using cryo-electron microscopy, we solved the OhyA dimer structure and conducted 3D variability analysis of the reconstructions to assess CTD flexibility. Our surface plasmon resonance experiments corroborated that OhyA binds the PG bilayer with nanomolar affinity and we found the CTD sequence has intrinsic PG binding properties. We determined that the nuclear magnetic resonance structure of a peptide containing the CTD sequence resembles the OhyA crystal structure. We observed intermolecular NOE from PG liposome protons next to the phosphate group to the CTD peptide. The addition of paramagnetic MnCl2 indicated the CTD peptide binds the PG surface but does not insert into the bilayer. Molecular dynamics simulations, supported by site-directed mutagenesis experiments, identify key residues in the helix-turn-helix that drive membrane association. The data show that the OhyA CTD binds the phosphate layer of the PG surface to obtain bilayer-embedded unsaturated fatty acids.


Assuntos
Ácido Oleico , Peptídeos , Staphylococcus aureus , Microscopia Crioeletrônica , Ácidos Graxos Insaturados , Bicamadas Lipídicas/metabolismo , Fosfatos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética
4.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37686027

RESUMO

The Toxin Complex (Tc) superfamily consists of toxin translocases that contribute to the targeting, delivery, and cytotoxicity of certain pathogenic Gram-negative bacteria. Membrane receptor targeting is driven by the A-subunit (TcA), which comprises IgG-like receptor binding domains (RBDs) at the surface. To better understand XptA2, an insect specific TcA secreted by the symbiont X. nematophilus from the intestine of entomopathogenic nematodes, we determined structures by X-ray crystallography and cryo-EM. Contrary to a previous report, XptA2 is pentameric. RBD-B exhibits an indentation from crystal packing that indicates loose association with the shell and a hotspot for possible receptor binding or a trigger for conformational dynamics. A two-fragment XptA2 lacking an intact linker achieved the folded pre-pore state like wild type (wt), revealing no requirement of the linker for protein folding. The linker is disordered in all structures, and we propose it plays a role in dynamics downstream of the initial pre-pore state.


Assuntos
Inseticidas , Toxinas Biológicas , Bandagens , Transporte Biológico , Cristalografia por Raios X , Dobramento de Proteína
5.
Membranes (Basel) ; 13(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37103850

RESUMO

Exogenous fatty acid (eFA) activation and utilization play key roles in bacterial physiology and confer growth advantages by bypassing the need to make fatty acids for lipid synthesis. In Gram-positive bacteria, eFA activation and utilization is generally carried out by the fatty acid kinase (FakAB) two-component system that converts eFA to acyl phosphate, and the acyl-ACP:phosphate transacylase (PlsX) that catalyzes the reversible conversion of acyl phosphate to acyl-acyl carrier protein. Acyl-acyl carrier protein is a soluble format of the fatty acid that is compatible with cellular metabolic enzymes and can feed multiple processes including the fatty acid biosynthesis pathway. The combination of FakAB and PlsX enables the bacteria to channel eFA nutrients. These key enzymes are peripheral membrane interfacial proteins that associate with the membrane through amphipathic helices and hydrophobic loops. In this review, we discuss the biochemical and biophysical advances that have established the structural features that drive FakB or PlsX association with the membrane, and how these protein-lipid interactions contribute to enzyme catalysis.

6.
bioRxiv ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38234804

RESUMO

Bacterial vaginosis (BV), a common syndrome characterized by Lactobacillus-deficient vaginal microbiota, is associated with adverse health outcomes. BV often recurs after standard antibiotic therapy in part because antibiotics promote microbiota dominance by Lactobacillus iners instead of Lactobacillus crispatus, which has more beneficial health associations. Strategies to promote L. crispatus and inhibit L. iners are thus needed. We show that oleic acid (OA) and similar long-chain fatty acids simultaneously inhibit L. iners and enhance L. crispatus growth. These phenotypes require OA-inducible genes conserved in L. crispatus and related species, including an oleate hydratase (ohyA) and putative fatty acid efflux pump (farE). FarE mediates OA resistance, while OhyA is robustly active in the human vaginal microbiota and sequesters OA in a derivative form that only ohyA-harboring organisms can exploit. Finally, OA promotes L. crispatus dominance more effectively than antibiotics in an in vitro model of BV, suggesting a novel approach for treatment.

7.
J Biol Chem ; 298(8): 102195, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35760102

RESUMO

Sulfonolipids are unusual lipids found in the outer membranes of Gram-negative bacteria in the phylum Bacteroidetes. Sulfonolipid and its deacylated derivative, capnine, are sulfur analogs of ceramide-1-phosphate and sphingosine-1-phosphate, respectively; thus, sulfonolipid biosynthesis is postulated to be similar to the sphingolipid biosynthetic pathway. Here, we identify the first enzyme in sulfonolipid synthesis in Alistipes finegoldii as the product of the alfi_1224 gene, cysteate acyl-acyl carrier protein (ACP) transferase (SulA). We show SulA catalyzes the condensation of acyl-ACP and cysteate (3-sulfo-alanine) to form 3-ketocapnine. Acyl-CoA is a poor substrate. We show SulA has a bound pyridoxal phosphate (PLP) cofactor that undergoes a spectral redshift in the presence of cysteate, consistent with the transition of the lysine-aldimine complex to a substrate-aldimine complex. Furthermore, the SulA crystal structure shows the same prototypical fold found in bacterial serine palmitoyltransferases (Spts), enveloping the PLP cofactor bound to Lys251. We observed the SulA and Spt active sites are identical except for Lys281 in SulA, which is an alanine in Spt. Additionally, SulA(K281A) is catalytically inactive but binds cysteate and forms the external aldimine normally, highlighting the structural role of the Lys281 side chain in walling off the active site from bulk solvent. Finally, the electropositive groove on the protein surface adjacent to the active site entrance provides a landing pad for the electronegative acyl-ACP surface. Taken together, these data identify the substrates, products, and mechanism of SulA, the PLP-dependent condensing enzyme that catalyzes the first step in sulfonolipid synthesis in a gut commensal bacterium.


Assuntos
Bacteroidetes , Ácido Cisteico , Proteína de Transporte de Acila , Alanina/metabolismo , Bacteroidetes/metabolismo , Lipídeos , Fosfato de Piridoxal/metabolismo
8.
Annu Rev Microbiol ; 76: 281-304, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35650664

RESUMO

Antibiotic resistance is a serious public health concern, and new drugs are needed to ensure effective treatment of many bacterial infections. Bacterial type II fatty acid synthesis (FASII) is a vital aspect of bacterial physiology, not only for the formation of membranes but also to produce intermediates used in vitamin production. Nature has evolved a repertoire of antibiotics inhibiting different aspects of FASII, validating these enzymes as potential targets for new antibiotic discovery and development. However, significant obstacles have been encountered in the development of FASII antibiotics, and few FASII drugs have advanced beyond the discovery stage. Most bacteria are capable of assimilating exogenous fatty acids. In some cases they can dispense with FASII if fatty acids are present in the environment, making the prospects for identifying broad-spectrum drugs against FASII targets unlikely. Single-target, pathogen-specific FASII drugs appear the best option, but a major drawback to this approach is the rapid acquisition of resistance via target missense mutations. This complication can be mitigated during drug development by optimizing the compound design to reduce the potential impact of on-target missense mutations at an early stage in antibiotic discovery. The lessons learned from the difficulties in FASII drug discovery that have come to light over the last decade suggest that a refocused approach to designing FASII inhibitors has the potential to add to our arsenal of weapons to combat resistance to existing antibiotics.


Assuntos
Antibacterianos , Ácidos Graxos , Antibacterianos/farmacologia , Bactérias/genética , Descoberta de Drogas
9.
J Biol Chem ; 298(6): 101993, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35490779

RESUMO

Fatty acid kinase (Fak) is a two-component enzyme that generates acyl-phosphate for phospholipid synthesis. Fak consists of a kinase domain protein (FakA) that phosphorylates a fatty acid enveloped by a fatty acid binding protein (FakB). The structural basis for FakB function has been established, but little is known about FakA. Here, we used limited proteolysis to define three separate FakA domains: the amino terminal FakA_N, the central FakA_L, and the carboxy terminal FakA_C. The isolated domains lack kinase activity, but activity is restored when FakA_N and FakA_L are present individually or connected as FakA_NL. The X-ray structure of the monomeric FakA_N captures the product complex with ADP and two Mg2+ ions bound at the nucleotide site. The FakA_L domain encodes the dimerization interface along with conserved catalytic residues Cys240, His282, and His284. AlphaFold analysis of FakA_L predicts the catalytic residues are spatially clustered and pointing away from the dimerization surface. Furthermore, the X-ray structure of FakA_C shows that it consists of two subdomains that are structurally related to FakB. Analytical ultracentrifugation demonstrates that FakA_C binds FakB, and site-directed mutagenesis confirms that a positively charged wedge on FakB meshes with a negatively charged groove on FakA_C. Finally, small angle X-ray scattering analysis is consistent with freely rotating FakA_N and FakA_C domains tethered by flexible linkers to FakA_L. These data reveal specific roles for the three independently folded FakA protein domains in substrate binding and catalysis.


Assuntos
Staphylococcus aureus , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Ácidos Graxos/metabolismo , Humanos , Infecções Estafilocócicas , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo
10.
NPJ Microgravity ; 8(1): 4, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177635

RESUMO

Microgravity conditions have been used to improve protein crystallization from the early 1980s using advanced crystallization apparatuses and methods. Early microgravity crystallization experiments confirmed that minimal convection and a sedimentation-free environment is beneficial for growth of crystals with higher internal order and in some cases, larger volume. It was however realized that crystal growth in microgravity requires additional time due to slower growth rates. The progress in space research via the International Space Station (ISS) provides a laboratory-like environment to perform convection-free crystallization experiments for an extended time. To obtain detailed insights in macromolecular transport phenomena under microgravity and the assumed reduction of unfavorable impurity incorporation in growing crystals, microgravity and unit gravity control experiments for three different proteins were designed. To determine the quantity of impurity incorporated into crystals, fluorescence-tagged aggregates of the proteins (acting as impurities) were prepared. The recorded fluorescence intensities of the respective crystals reveal reduction in the incorporation of aggregates under microgravity for different aggregate quantities. The experiments and data obtained, provide insights about macromolecular transport in relation to molecular weight of the target proteins, as well as information about associated diffusion behavior and crystal lattice formation. Results suggest one explanation why microgravity-grown protein crystals often exhibit higher quality. Furthermore, results from these experiments can be used to predict which proteins may benefit more from microgravity crystallization.

11.
Microbiol Spectr ; 9(3): e0154621, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34817231

RESUMO

Staphylococcus aureus is an important pathogen that relies on a variety of mechanisms to evade and counteract the immune system. We show that S. aureus uses oleate hydratase (OhyA) to convert host cis-9 unsaturated fatty acids to their 10-hydroxy derivatives in human serum and at the infection site in a mouse neutropenic thigh model. Wild-type and ΔohyA strains were equally infective in the neutropenic thigh model, but recovery of the ΔohyA strain was 2 orders of magnitude lower in the immunocompetent skin infection model. Despite the lower bacterial abundance at the infection site, the levels of interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1), IL-1ß, and tumor necrosis factor alpha (TNF-α) elicited by the ΔohyA strain were as robust as those of either the wild-type or the complemented strain, indicating that the immune system was more highly activated by the ΔohyA strain. Thus, OhyA functions to promote S. aureus virulence. IMPORTANCE The oleate hydratase protein family was discovered in commensal bacteria that utilize host unsaturated fatty acids as the substrates to produce a spectrum of hydroxylated products. These hydroxy fatty acids are thought to act as signaling molecules that suppress the inflammatory response to create a more tolerant environment for the microbiome. S. aureus is a significant human pathogen, and defining the mechanisms used to evade the immune response is critical to understanding pathogenesis. S. aureus expresses an OhyA that produces at least three 10-hydroxy fatty acids from host unsaturated fatty acids at the infection site, and an S. aureus strain lacking the ohyA gene has compromised virulence in an immunocompetent infection model. These data suggest that OhyA plays a role in immune modulation in S. aureus pathogenesis similar to that in commensal bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Ácido Oleico/metabolismo , Staphylococcus aureus/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Ácidos Graxos , Ácidos Graxos Insaturados/metabolismo , Camundongos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Fator de Necrose Tumoral alfa , Virulência , Fatores de Virulência/genética
12.
J Biol Chem ; 297(6): 101434, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34801557

RESUMO

Bacterial fatty acid synthesis in Escherichia coli is initiated by the condensation of an acetyl-CoA with a malonyl-acyl carrier protein (ACP) by the ß-ketoacyl-ACP synthase III enzyme, FabH. E. coli ΔfabH knockout strains are viable because of the yiiD gene that allows FabH-independent fatty acid synthesis initiation. However, the molecular function of the yiiD gene product is not known. Here, we show the yiiD gene product is a malonyl-ACP decarboxylase (MadA). MadA has two independently folded domains: an amino-terminal N-acetyl transferase (GNAT) domain (MadAN) and a carboxy-terminal hot dog dimerization domain (MadAC) that encodes the malonyl-ACP decarboxylase function. Members of the proteobacterial Mad protein family are either two domain MadA (GNAT-hot dog) or standalone MadB (hot dog) decarboxylases. Using structure-guided, site-directed mutagenesis of MadB from Shewanella oneidensis, we identified Asn45 on a conserved catalytic loop as critical for decarboxylase activity. We also found that MadA, MadAC, or MadB expression all restored normal cell size and growth rates to an E. coli ΔfabH strain, whereas the expression of MadAN did not. Finally, we verified that GlmU, a bifunctional glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase that synthesizes the key intermediate UDP-GlcNAc, is an ACP binding protein. Acetyl-ACP is the preferred glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase substrate, in addition to being the substrate for the elongation-condensing enzymes FabB and FabF. Thus, we conclude that the Mad family of malonyl-ACP decarboxylases supplies acetyl-ACP to support the initiation of fatty acid, lipopolysaccharide, peptidoglycan, and enterobacterial common antigen biosynthesis in Proteobacteria.


Assuntos
Proteína de Transporte de Acila/metabolismo , Parede Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II/metabolismo , Ácidos Graxos/biossíntese , Shewanella/metabolismo , Proteína de Transporte de Acila/genética , Parede Celular/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ácido Graxo Sintase Tipo II/genética , Ácidos Graxos/genética , Shewanella/genética
13.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 9): 286-293, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473105

RESUMO

The substrate-binding protein YfeA (also known as YPO2439 or y1897) is a polyspecific metal-binding protein that is crucial for nutrient acquisition and virulence in Yersinia pestis, the causative microbe of plague. YfeA folds into a monomeric c-clamp like other substrate-binding proteins and has two metal-binding sites (sites 1 and 2). Site 2 is a bidentate surface site capable of binding Zn and Mn atoms and is a unique feature of YfeA. Occasionally, the site 2 residues of two YfeA molecules will cooperate with the histidine tag of a third YfeA molecule in coordinating the same metal and lead to metal-dependent crystallographic packing. Here, three crystal structures of YfeA are presented at 1.85, 2.05 and 2.25 Šresolution. A comparison of the structures reveals that the metal can be displaced at five different locations ranging from ∼4 to ∼16 Šaway from the canonical site 2. These observations reveal different configurations of site 2 that enable cooperative metal binding and demonstrate how site 2 is dynamic and freely available for inter-protein metal coordination.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cloretos/metabolismo , Compostos de Manganês/metabolismo , Yersinia pestis/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Conformação Proteica
14.
J Biol Chem ; 296: 100252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33376139

RESUMO

Flavin adenine dinucleotide (FAD)-dependent bacterial oleate hydratases (OhyAs) catalyze the addition of water to isolated fatty acid carbon-carbon double bonds. Staphylococcus aureus uses OhyA to counteract the host innate immune response by inactivating antimicrobial unsaturated fatty acids. Mechanistic information explaining how OhyAs catalyze regiospecific and stereospecific hydration is required to understand their biological functions and the potential for engineering new products. In this study, we deduced the catalytic mechanism of OhyA from multiple structures of S. aureus OhyA in binary and ternary complexes with combinations of ligands along with biochemical analyses of relevant mutants. The substrate-free state shows Arg81 is the gatekeeper that controls fatty acid entrance to the active site. FAD binding engages the catalytic loop to simultaneously rotate Glu82 into its active conformation and Arg81 out of the hydrophobic substrate tunnel, allowing the fatty acid to rotate into the active site. FAD binding also dehydrates the active site, leaving a single water molecule connected to Glu82. This active site water is a hydronium ion based on the analysis of its hydrogen bond network in the OhyA•PEG400•FAD complex. We conclude that OhyA accelerates acid-catalyzed alkene hydration by positioning the fatty acid double bond to attack the active site hydronium ion, followed by the addition of water to the transient carbocation intermediate. Structural transitions within S. aureus OhyA channel oleate to the active site, curl oleate around the substrate water, and stabilize the hydroxylated product to inactivate antimicrobial fatty acids.


Assuntos
Proteínas de Bactérias/ultraestrutura , Hidroliases/ultraestrutura , Infecções Estafilocócicas/enzimologia , Staphylococcus aureus/ultraestrutura , Proteínas de Bactérias/química , Catálise , Domínio Catalítico/genética , Cristalografia por Raios X , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Humanos , Hidroliases/química , Hidroliases/metabolismo , Ácido Oleico/química , Ácido Oleico/metabolismo , Conformação Proteica , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/química , Staphylococcus aureus/genética , Especificidade por Substrato/genética
15.
J Biol Chem ; 295(22): 7635-7652, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32317282

RESUMO

Enoyl-acyl carrier protein reductase (FabI) catalyzes a rate-controlling step in bacterial fatty-acid synthesis and is a target for antibacterial drug development. A phylogenetic analysis shows that FabIs fall into four divergent clades. Members of clades 1-3 have been structurally and biochemically characterized, but the fourth clade, found in members of phylum Bacteroidetes, is uncharacterized. Here, we identified the unique structure and conformational changes that distinguish clade 4 FabIs. Alistipes finegoldii is a prototypical Bacteroidetes inhabitant of the gut microbiome. We found that A. finegoldii FabI (AfFabI) displays cooperative kinetics and uses NADH as a cofactor, and its crystal structure at 1.72 Å resolution showed that it adopts a Rossmann fold as do other characterized FabIs. It also disclosed a carboxyl-terminal extension that forms a helix-helix interaction that links the protomers as a unique feature of AfFabI. An AfFabI·NADH crystal structure at 1.86 Å resolution revealed that this feature undergoes a large conformational change to participate in covering the NADH-binding pocket and establishing the water channels that connect the active site to the central water well. Progressive deletion of these interactions led to catalytically compromised proteins that fail to bind NADH. This unique conformational change imparted a distinct shape to the AfFabI active site that renders it refractory to a FabI drug that targets clade 1 and 3 pathogens. We conclude that the clade 4 FabI, found in the Bacteroidetes inhabitants of the gut, have several structural features and conformational transitions that distinguish them from other bacterial FabIs.


Assuntos
Proteínas de Bactérias/química , Bacteroidetes/enzimologia , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Microbioma Gastrointestinal , NAD/química , Sítios de Ligação , Cristalografia por Raios X , Humanos
16.
Mol Microbiol ; 113(4): 807-825, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31876062

RESUMO

Members of the Bacteroidetes phylum, represented by Alistipes finegoldii, are prominent anerobic, Gram-negative inhabitants of the gut microbiome. The lipid biosynthetic pathways were analyzed using bioinformatic analyses, lipidomics, metabolic labeling and biochemistry to characterize exogenous fatty acid metabolism. A. finegoldii only produced the saturated fatty acids. The most abundant lipids were phosphatidylethanolamine (PE) and sulfonolipid (SL). Neither phosphatidylglycerol nor cardiolipin are present. PE synthesis is initiated by the PlsX/PlsY/PlsC pathway, whereas the SL pathway is related to sphingolipid biosynthesis. A. finegoldii incorporated medium-chain fatty acids (≤14 carbons) into PE and SL after their elongation, whereas long-chain fatty acids (≥16 carbons) were not elongated. Fatty acids >16 carbons were primarily incorporated into the 2-position of phosphatidylethanolamine at the PlsC step, the only biosynthetic enzyme that utilizes long-chain acyl-ACP. The ability to assimilate a broad-spectrum of fatty acid chain lengths present in the gut environment is due to the expression of two acyl-acyl carrier protein (ACP) synthetases. Acyl-ACP synthetase 1 had a substrate preference for medium-chain fatty acids and synthetase 2 had a substrate preference for long-chain fatty acids. This unique combination of synthetases allows A. finegoldii to utilize both the medium- and long-chain fatty acid nutrients available in the gut environment to assemble its membrane lipids.


Assuntos
Bacteroidetes/metabolismo , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal , Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/metabolismo , Carbono-Enxofre Ligases/metabolismo , Humanos , Lipídeos/biossíntese , Fosfatidiletanolaminas/biossíntese
17.
Acta Crystallogr D Struct Biol ; 75(Pt 9): 831-840, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31478906

RESUMO

In the structural biology of bacterial substrate-binding proteins (SBPs), a growing number of comparisons between substrate-bound and substrate-free forms of metal atom-binding (cluster A-I) SBPs have revealed minimal structural differences between forms. These observations contrast with SBPs that bind substrates such as amino acids or nucleic acids and may undergo >60° rigid-body rotations. Substrate transfer in these SBPs is described by a Venus flytrap model, although this model may not apply to all SBPs. In this report, structures are presented of substrate-free (apo) and reconstituted substrate-bound (holo) YfeA, a polyspecific cluster A-I SBP from Yersinia pestis. It is demonstrated that an apo cluster A-I SBP can be purified by fractionation when co-expressed with its cognate transporter, adding an alternative strategy to the mutagenesis or biochemical treatment used to generate other apo cluster A-I SBPs. The apo YfeA structure contains 111 disordered protein atoms in a mobile helix located in the flexible carboxy-terminal lobe. Metal binding triggers a 15-fold reduction in the solvent-accessible surface area of the metal-binding site and reordering of the 111 protein atoms in the mobile helix. The flexible lobe undergoes a 13.6° rigid-body rotation that is driven by a spring-hammer metal-binding mechanism. This asymmetric rigid-body rotation may be unique to metal atom-binding SBPs (i.e. clusters A-I, A-II and D-IV).


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Yersinia pestis/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Zinco/metabolismo
18.
J Vis Exp ; (132)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29443084

RESUMO

We demonstrate a scalable method for the separation of the bacterial periplasm from the cytoplasm. This method is used to purify periplasmic protein for the purpose of biophysical characterization, and measure substrate transfer between periplasmic and cytoplasmic compartments. By carefully limiting the time that the periplasm is separated from the cytoplasm, the experimenter can extract the protein of interest and assay each compartment individually for substrate without carry-over contamination between compartments. The extracted protein from fractionation can then be further analyzed for three-dimensional structure determination or substrate-binding profiles. Alternatively, this method can be performed after incubation with a radiotracer to determine total percent uptake, as well as distribution of the tracer (and hence metal transport) across different bacterial compartments. Experimentation with a radiotracer can help differentiate between a physiological substrate and artefactual substrate, such as those caused by mismetallation. X-ray fluorescence can be used to discover the presence or absence of metal incorporation in a sample, as well as measure changes that may occur in metal incorporation as a product of growth conditions, purification conditions, and/or crystallization conditions. X-ray fluorescence also provides a relative measure of abundance for each metal, which can be used to determine the best metal energy absorption peak to use for anomalous X-ray scattering data collection. Radiometal uptake can be used as a method to validate the physiological nature of a substrate detected by X-ray fluorescence, as well as support the discovery of novel substrates.


Assuntos
Fracionamento Celular/métodos , Bactérias Gram-Negativas/patogenicidade , Metais/química , Radioisótopos/uso terapêutico , Espectrometria por Raios X/métodos , Metais/análise
19.
Acta Crystallogr D Struct Biol ; 73(Pt 11): 921-939, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29095164

RESUMO

Biological chelating molecules called siderophores are used to sequester iron and maintain its ferric state. Bacterial substrate-binding proteins (SBPs) bind iron-siderophore complexes and deliver these complexes to ATP-binding cassette (ABC) transporters for import into the cytoplasm, where the iron can be transferred from the siderophore to catalytic enzymes. In Yersinia pestis, the causative agent of plague, the Yersinia iron-uptake (Yiu) ABC transporter has been shown to improve iron acquisition under iron-chelated conditions. The Yiu transporter has been proposed to be an iron-siderophore transporter; however, the precise siderophore substrate is unknown. Therefore, the precise role of the Yiu transporter in Y. pestis survival remains uncharacterized. To better understand the function of the Yiu transporter, the crystal structure of YiuA (YPO1310/y2875), an SBP which functions to present the iron-siderophore substrate to the transporter for import into the cytoplasm, was determined. The 2.20 and 1.77 Šresolution X-ray crystal structures reveal a basic triad binding motif at the YiuA canonical substrate-binding site, indicative of a metal-chelate binding site. Structural alignment and computational docking studies support the function of YiuA in binding chelated metal. Additionally, YiuA contains two mobile helices, helix 5 and helix 10, that undergo 2-3 Šshifts across crystal forms and demonstrate structural breathing of the c-clamp architecture. The flexibility in both c-clamp lobes suggest that YiuA substrate transfer resembles the Venus flytrap mechanism that has been proposed for other SBPs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Chaperonas Moleculares/química , Sideróforos/metabolismo , Yersinia pestis/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Ferro/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Conformação Proteica
20.
Acta Crystallogr D Struct Biol ; 73(Pt 7): 557-572, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28695856

RESUMO

Gram-negative bacteria use siderophores, outer membrane receptors, inner membrane transporters and substrate-binding proteins (SBPs) to transport transition metals through the periplasm. The SBPs share a similar protein fold that has undergone significant structural evolution to communicate with a variety of differentially regulated transporters in the cell. In Yersinia pestis, the causative agent of plague, YfeA (YPO2439, y1897), an SBP, is important for full virulence during mammalian infection. To better understand the role of YfeA in infection, crystal structures were determined under several environmental conditions with respect to transition-metal levels. Energy-dispersive X-ray spectroscopy and anomalous X-ray scattering data show that YfeA is polyspecific and can alter its substrate specificity. In minimal-media experiments, YfeA crystals grown after iron supplementation showed a threefold increase in iron fluorescence emission over the iron fluorescence emission from YfeA crystals grown from nutrient-rich conditions, and YfeA crystals grown after manganese supplementation during overexpression showed a fivefold increase in manganese fluorescence emission over the manganese fluorescence emission from YfeA crystals grown from nutrient-rich conditions. In all experiments, the YfeA crystals produced the strongest fluorescence emission from zinc and could not be manipulated otherwise. Additionally, this report documents the discovery of a novel surface metal-binding site that prefers to chelate zinc but can also bind manganese. Flexibility across YfeA crystal forms in three loops and a helix near the buried metal-binding site suggest that a structural rearrangement is required for metal loading and unloading.


Assuntos
Metais/metabolismo , Proteínas Periplásmicas de Ligação/química , Peste/microbiologia , Fatores de Virulência/química , Yersinia pestis/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ferro/metabolismo , Manganês/metabolismo , Modelos Moleculares , Proteínas Periplásmicas de Ligação/metabolismo , Conformação Proteica , Alinhamento de Sequência , Especificidade por Substrato , Fatores de Virulência/metabolismo , Yersinia pestis/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...